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In this note, we utilize the recently calculated long wavelength limit of the
“liquid virtual crystal” model of a binary alloy liquid structure factor at the-
melting temperature, STAB (0), to estimate the long wavelength sound
velocity for a group of simple, nearly equi-valent and equi-volume binary
liquid alloys. We compare the calculated sound velocities to the available
experimental sound velocities in these liquid binary alloys and find reasonable
agreement.

Omini', utilizing the Percus-Yevick? collective coordinate theory of
liquids, has calculated the melting entropy of a series of simple metals.
Percus and Yevick® derived a 3N collective coordinate theory of simple hard
sphere liquids in which the potential energy can be written as that of an
assembly of 3N harmonic oscillators (liquid phonons)

vPY. = 12 >k: Ve (qL q_x -N) M

{}
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212 E. SIEGEL

where the set {k} are chosen to optimize the problem, and the ¥, are
coefficients to be determined. This “liquid phonon” representation was
performed in terms of 3N collective boson coordinates

q PY =T eikexj 2)

- 1
These liquid phonons have a frequency spectrum (dispersion relation)

with a maximum occurring, for simple metals, at about half the cut-off
frequency and about half the cut-off wavevector (about one third the cut-off
wavevector in Pb)

Q= (18n* p/m)'? (4)
and
(‘-‘)LP'Y'Z)MAX = (1872 p/m)2/3 T/2m (1 +v£/kB T) )

respectively, where m is the liquid particle’s mass and p is the liquid density.
Using the Ascarelli-Harrison-Paskin® relation between the long wavelength
limit of the liquid structure factor for liquid metals, and extending it to
liquid ailoys

SAB(0) = kg T/ (kT + VQB) 6)

we can rewrite the Percus-Yevick? alloy liquid phonon dispersion relation at
the melting temperature as

2 ~
(@Y Dap = K kp TRP [ Tipp S32 (0) )
where the alloy “particle” effective mass is defined by
EIAB_I = mA.l +mB—l (8)
Thus, the dispersion relation maximum becomes, at the melting temperature
2
(oY (TR B =
= (1877 pAB (Ty) [ Wiap)*" K* kp TR / Fisp sﬁ 0) )

This is a temperature dependent Percus-Yevick? cut off in wavevector and
frequency, which we choose to evaluate at the melting temperature. We
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utilize Siegel’s* adaption of the Omini? and Percus-Yevick? theories to liquid
binary alloys, the liquid virtual crystal model. Then, the sound velocity at
the melting temperature is

v{AB (Ty) = (kg T4P /isp sﬁ (0) )2 (10)

Siegel* calculated Sﬁ (0) values for the following liquid binary alloys:
LiNa, K-Rb, Rb-Cs, Al-Zn, Zn-Ga and AIl-Ga, which were chosen because
they were the most nearly equi-valent and equi-volume combinations of the
simple metals the Omini' theory was performed upon. Since they are equi-
valent and equi-volume, SAB (0) = SA (0) = SB (0).

In Table I we estimate the long wavelength sound velocities in these
alloys at their melting temperatures as a function of solute concentration,
and compare them to available experimental data. In Figure 1 we plot the
sound velocities, vg‘B (Tym), versus percent solute concentration. We note
that in all alloys considered, the sound velocity at long wavelengths drops
upon alloying, rising again to some value at 100% pure solute. The calculated
sound velocities compared with the experimental agree rather well. The drop
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FIGURE 1  Sound velocities at the melting temperature for a variety of simple metat
alloys as a function of solute concentration. All of these alloys are equi-valent and
equi-volume, and so are virtual liquid crystal like, with one liquid structure factor.
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in sound velocity upon alloying in the liquid state is to be expected, as
alloying contributes another form of disorder scattering in addition to the
positional disorder inherent in the liquid state, atom type disorder scattering.
In conclusion, the use of the liquid virtual crystal model of liquid alloys,
with Omini’s' adaption of the Percus-Yevick? theory of melting, allows us to
compute reasonable sound velocities from the liquid phonon dispersion
relation at the melting temperature. One could extend this to any temperature
by recalculating SAB (0) at that temperature, and one could try an extension
of this work to non-equi-valent and non-equi-volume binary alloys by calcu-
lating the correct S AB (0), $A (0) and SB (0), the three unequal structure fac-
tors, and utilizing an analog of their relation to v, (T) when they are all equal.
This would go beyond this liquid virtual crystal approximation, which is only
a first, simplest assumption. One should be cautious about the use of the
liquid virtual crystal approximation for concentrated liquid alloys, both
here and in future calculations, since in solid alloys, the virtual crystal
approximation breaks down in the non-dilute case. We utilized this approxi-
mation here merely as an illustrative first step in the solution of the hard
problem of sound wave scattering in a liquid alloy. The Percus-Yevick
dispersion relations of Omini’ have a maxirnum at Q/2, not at Q, for most
simple liquid metals (except Pb, where the maximum is at Q/3) so that the
estimated sound velocities are already in error by a factor of two, due to the
non-monatonicity of the liquid phonon frequency spectrum.
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